Correction du TD 9

Julien Reichert

Exercice 1

On peut montrer par une récurrence facile que $c_{b^k} = a^k$. En pratique, le résultat se déduit encore plus facilement de la réécriture $T_k = aT_{k-1}$.

Exercice 2

En passant par une puissance de b, on trouve que $n^{\log_b a} = b^{\log_b(n^{\log_b a})} = b^{(\log_b a)(\log_b n)}$ et on fait jouer la symétrie.

Exercice 3

En élevant à la puissance b, on a $\log_b a = \alpha$ ssi $a = b^{\alpha}$.

Exercice 4

Puisque l'infériorité des exposants donne la négligeabilité des expressions, puis en se servant de l'exercice 2, on trouve que si $\log_b a < \alpha$, alors $n^{\log_b a} = o(n^{\alpha})$, d'où $a^{\log_b n} = o(n^{\alpha})$.

Exercice 5

Toujours avec $\log_b a < \alpha$, on réécrit en s'inspirant de l'exercice 3 que $a < b^{\alpha}$ et donc en multipliant à gauche et à droite par $(b^{k-1})^{\alpha}$, on trouve que $a(b^{k-1})^{\alpha} < (b^k)^{\alpha}$, et on peut glisser un facteur C en prenant une valeur entre $\frac{\log_b a}{\alpha}$ et 1, par exemple la moyenne de ces deux nombres.

Exercice 6

En supposant cette fois-ci que $\log_b a > \alpha$, on renverse la négligeabilité et on a d'une part $n^{\alpha} = o(a^{\log_b n})$, et d'autre part il existe $C \in]0,1[$ tel que $(b^k)^{\alpha} < Ca(b^{k-1})^{\alpha}$.

Exercice 7

En réécrivant la relation de récurrence sous la forme $T_k = aT_{k-1} + (b^k)^{\alpha}$, on montre par récurrence (en distribuant le a au niveau de la preuve d'hérédité) que $T_k = \sum_{i=0}^k a^{k-i} (b^{\alpha})^i$.

Exercice 8

En pratique, on peut sortir a^k de la somme et rassembler au niveau de l'exposant désormais commun (au signe près) pour tomber sur $T_k = a^k \sum_{i=0}^k (\frac{b^{\alpha}}{a})^i$ qui est une somme géométrique.

Il y a désormais deux possibilités (dont une qui se scindera au moment d'étudier la limite) :

- Si $a = b^{\alpha}$, alors $T_k = a^k \times (k+1)$.
- Sinon, $T_k = a^k \frac{\left(\frac{b^{\alpha}}{a}\right)^{k+1} 1}{\frac{b^{\alpha}}{a} 1}$.

Exercice 9

Déterminons un équivalent quand k tend vers $+\infty$ de c_{b^k} .

- Si $a = b^{\alpha}$, alors $c_{b^k} = (k+1)a^k$, et en passant à n qui est b^k , on en déduit $c_n = \Theta(n^{\log_b a} \log n)$ puisque $k = \log_b n$ et $a^k = a^{\log_b n} = n^{\log_b a}$.
- Si $a > b^{\alpha}$, alors $\frac{b^{\alpha}}{a}$ est strictement compris entre 0 et 1 et la limite de $(\frac{b^{\alpha}}{a})^{k+1}$ est nulle. La somme totale est alors équivalente à une constante (la limite de fraction d'avant, qui figurait à droite) fois a^k , et en repassant à n on trouve aussi que $c_n = \Theta(n^{\log_b a})$.
- Si $a < b^{\alpha}$, alors en incorporant le a^k dans la fraction (précisément a^{k+1} au numérateur et a au dénominateur), on tombe sur $T_k = \frac{(b^{\alpha})^{k+1} a^{k+1}}{b^{\alpha} a}$. En repassant à n on trouve que $c_n = \frac{(b^{\alpha}) \times n^{\alpha} a \times n^{\log_b a}}{b^{\alpha} a}$, et les croissances comparées font qu'on néglige le terme soustrait dans le dénominateur pour tomber sur $c_n = \Theta(n^{\alpha})$.

Exercice 10

En maintenant $\Theta(n^{\alpha})$, on peut encadrer chacun des $\Theta((b^{i})^{\alpha})$ par $m(b^{i})^{\alpha}$ à gauche et $M(b^{i})^{\alpha}$ à droite. On prend le même encadrement pour tout i parce que l'idée est qu'on a une fonction ayant cet encadrement qu'on peut appeler sur chacun des paramètres. Dans ce cas, on peut minorer le résultat obtenu précédemment en se servant de $m(b^{i})^{\alpha}$ plutôt que $(b^{i})^{\alpha}$ et le majorer en se servant de $M(b^{i})^{\alpha}$. Dans tous les cas, le Θ reste valide.

Exercice 11

Si $b^k \leq n < b^{k+1}$, on peut minorer c_n par un $mf(b^k)$ où f est donnée en fonction du cas rencontré dans ce qui précède, et le majorer par un $Mf(b^{k+1})$, sachant que dans tous les cas la multiplication par b de l'argument de f occasionnera une multiplication du résultat par une valeur majorée (par exemple b^{α}).

Exercice 12

Dans le cas de l'algorithme de Karatsuba, la formule de récurrence obtenue était $c_n = 3c_{\frac{n}{2}} + \Theta(n)$, d'où $c_n = \Theta(n^{\log_2 3})$ car $\log_2 3 > 1$. Dans le cas de l'algorithme de Strassen, la formule de récurrence obtenue était $c_n = 7c_{\frac{n}{2}} + \Theta(n^2)$, d'où $c_n = \Theta(n^{\log_2 7})$ car $\log_2 7 > 2$.